Full LCA of Wave Energy Conversion

R Camilla Thomson, G P Harrison and J P Chick

Institute for Energy Systems, School of Engineering, University of Edinburgh

26th February 2016

Images from www.pelamiswave.com and www.aquamarinepower.com
• Very few Life Cycle Assessments for wave energy conversion

• Generic methodological framework for LCA introduces considerable scope for variation in results

• Existing focus on carbon and energy

• More complete LCA of Pelamis and Oyster, considering a broader range of environmental impacts

NREL data taken from the LCA Harmonization Project, http://en.openei.org/apps/LCA/
Pelamis P1

- Semi-submerged, snake-like offshore wave energy converter made of a series of articulating buoyant steel cylinders.
- The passage of the wave front causes the joints between the cylinders to flex, moving hydraulic rams that pump high-pressure oil through a system to drive induction generators.
- Parker et al. published a carbon and energy audit in 2007 [2].
- Full LCA published in 2014 [5].
Oyster 1

• Buoyant hinged steel flap fixed to the sea bed.
• Wave surges induce oscillations of the flap that are resisted by hydraulic rams; these pump water through a pipe to shore, where a Pelton turbine and generator convert the energy to electricity.
• Walker and Howell published a carbon and energy audit in 2011 [3].
• Full LCA yet to be published.

The Analysis

• Cradle-to-grave
• Inventory of resource use and emissions at all stages:
 – Materials & Manufacture
 – Assembly & Installation
 – Operations & Maintenance
 – Decommissioning & Disposal
• Classify and characterise results to determine impact potentials
Pelamis Results

- Greatest impacts from manufacturing and maintenance stages
 - Steel production
 - Sea vessel operations
- Energy intensity
 - 469 kJ/kWh
 - 31 months payback
- Global warming potential
 - 30 gCO₂e/kWh
 - 15 months payback
Oyster Results

- Greatest impacts from materials
 - Steel production
 - Seabed fixings
- Energy intensity
 - 889 kJ/kWh
 - 59 months payback
- Global warming potential
 - 79 gCO₂e/kWh
 - 41 months payback
Conclusions

• Carbon and energy intensities compare favourably.
• Greatest impacts due to
• Considerable uncertainty is introduced by LCA methodology:
 – Recycling allocation method: 34%
 – Inclusion of all GHGs: 11%

Pictures from www.pelamiswave.com and www.aquamarinepower.com
References

